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1. Introduction

The CMB radiation shows how the universe was like when it was only 400, 000 years old. If

photons and baryons were in equilibrium before they decoupled from each other, then the

CMB radiation we observe today should have a black body spectrum indicating a smooth

early universe. But in 1992, the Cosmic Background Explorer (COBE) satellite detected

anisotropies in the CMB radiation, which led to the conclusion that the early universe was

not smooth: There were small perturbations in the photon-baryon fluid.

The theory of inflation was introduced [1 – 3] to resolve the fine tuning problems asso-

ciated with the standard Big Bang cosmology. An important property of inflation is that

it can generate irregularities in the universe, which may lead to the formation of structure.

Inflation is assumed to be driven by a classical scalar field that accelerates the observed

universe towards a perfect homogeneous state. But we live in a quantum world where

perfect homogeneity is never attained. The classical scalar field has quantum fluctuations

around it and these fluctuations act as seeds for the primordial perturbations over the

smooth universe. Thus according to these ideas, the early universe had inhomogeneities

and we observe them today in the distribution of large scale structure and anisotropies in

the CMB radiation.

Physics at Planck scale could be radically different. It is the regime of string theory and

quantum gravity. Inflation stretches a region of Planck size into cosmological scales. So, at
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the end of inflation, physics at Planck region should leave its signature on the cosmological

scales too.

There are indications both from quantum gravity and string theory that spacetime

is noncommutative with a length scale of the order of Planck length. In this paper we

explore the consequences of such noncommutativity for CMB radiation in the light of recent

developments in the field of noncommutative quantum field theories relating to deformed

Poincaré symmetry.

The early universe and CMB in the noncommutative framework have been addressed

in many places [4 – 11]. In [4], the noncommutative parameter θµν = −θνµ = constants with

θ0i = 0, (µ, ν = 0, 1, 2, 3, with 0 denoting time direction), characterizing the Moyal plane is

scale dependent, while [6, 8, 7] have considered noncommutativity based on stringy space-

time uncertainty relations. Our approach differs from these authors since our quantum

fields obey twisted statistics, as implied by the deformed Poincaré symmetry in quantum

theories.

We organize the paper as follows: In section 2, we discuss how noncommutativity

breaks the usual Lorentz invariance and indicate how this breaking can be interpreted

as invariance under a deformed Poincaré symmetry. In section 3, we write down an ex-

pression for a scalar quantum field in the noncommutative framework and show how its

two-point function is modified. We review the theory of cosmological perturbations and

(direction-independent) power spectrum for θµν = 0 in section 4. In section 5, we derive

the power spectrum for the noncommutative Groenewold-Moyal plane Aθ and show that it

is direction-dependent and breaks statistical isotropy. In section 6, we compute the angular

correlations using this power spectrum and show that there are nontrivial O(θ2) corrections

to the CMB temperature fluctuations. Next, in section 7, we discuss the modifications of

the n-point functions for any n brought about by a non-zero θµν and show in particular

that the underlying probability distribution is not Gaussian. The paper concludes with

section 8.

2. Noncommutative spacetime and deformed Poincaré symmetry

At energy scales close to the Planck scale, the quantum nature of spacetime is expected to

become important. Arguments based on Heisenberg’s uncertainty principle and Einstein’s

theory of classical gravity suggest that spacetime has a noncommutative structure at such

length scales [12]. We can model such spacetime noncommutativity by the commutation

relations [13 – 16]

[x̂µ, x̂ν ] = iθµν (2.1)

where θµν = −θνµ are constants and x̂µ are the coordinate functions of the chosen coordi-

nate system:

x̂µ(x) = xµ. (2.2)

The above relations depend on choice of coordinates. The commutation relations given

in eq. (2.1) only hold in special coordinate systems and will look quite complicated in other

coordinate systems. Therefore, it is important to know that in which coordinate system
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the above simple form for the commutation relations holds. For cosmological applications,

it is natural to assume that eq. (2.1) holds in a comoving frame, the coordinates in which

galaxies are freely falling. Not only does it make the analysis and comparison with the

observation easier, but also make the time coordinate the proper time for us (neglecting

the small local accelerations).

The relations (2.1) are not invariant under naive Lorentz transformations either. But

they are invariant under a deformed Lorentz Symmetry [17], in which the coproduct on the

Lorentz group is deformed while the group structure is kept intact, as we briefly explain

below.

The Lie algebra P of the Poincaré group has generators (basis) Mαβ and Pµ. The subal-

gebra of infinitesimal generators Pµ is abelian and we can make use of this fact to construct

a twist element Fθ of the underlying quantum group theory [18 – 20]. Using this twist ele-

ment, the coproduct of the universal enveloping algebra U(P) of the Poincaré algebra can

be deformed in such a way that it is compatible with the above commutation relations.

The coproduct ∆0 appropriate for θµν = 0 is a symmetric map from U(P) to U(P) ⊗
U(P). It defines the action of P on the tensor product of representations. In the case of

the generators X of P, this standard coproduct is

∆0(X) = 1⊗X + X ⊗ 1. (2.3)

The twist element is

Fθ = exp

(
− i

2
θαβPα ⊗ Pβ

)
, Pα = −i∂α. (2.4)

(The Minkowski metric with signature (−,+,+,+) is used to raise and lower the indices.)

In the presence of the twist, the coproduct ∆0 is modified to ∆θ where

∆θ = F−1
θ ∆0Fθ. (2.5)

It is easy to see that the coproduct for translation generators are not deformed,

∆θ(Pα) = ∆0(Pα) (2.6)

while the coproduct for Lorentz generators are deformed:

∆θ(Mµν) = 1⊗Mµν + Mµν ⊗ 1− 1

2

[
(P · θ)µ ⊗ Pν − Pν ⊗ (P · θ)µ − (µ↔ ν)

]
,

(P · θ)λ = Pρθ
ρ
λ. (2.7)

The algebra A0 of functions on the Minkowski space M4 is commutative with the

commutative multiplication m0:

m0(f ⊗ g)(x) = f(x)g(x). (2.8)

The Poincaré algebra acts on A0 in a well-known way

Pµf(x) = −i∂µf(x), Mµν f(x) = −i(xµ∂ν − xν∂µ)f(x). (2.9)
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It acts on tensor products f ⊗ g using the coproduct ∆0(X).

This commutative multiplication is changed in the Groenewold-Moyal algebra Aθ to

mθ:

mθ(f ⊗ g)(x) = m0

[
e−

i
2
θαβPα⊗Pβ f ⊗ g

]
(x) = (f ⋆ g)(x). (2.10)

Equation (2.1) is a consequence of this ⋆-multiplication:

[x̂µ, x̂ν ]⋆ = mθ (x̂µ ⊗ x̂ν − x̂ν ⊗ x̂µ) = iθµν . (2.11)

The Poincaré algebra acts on functions f ∈ Aθ in the usual way while it acts on tensor

products f ⊗ g ∈ Aθ ⊗Aθ using the coproduct ∆θ(X) [17, 21].

Quantum field theories can be constructed on the noncommutative spacetime Aθ by

replacing ordinary multiplication between the fields by ⋆-multiplication and deforming

statistics as we discuss below [22 – 25]. These theories are invariant under the deformed

Poincaré action [17, 21, 25, 24] under which θµν is invariant. It is thus possible to observe

θµν without violating deformed Poincaré symmetry. But of course they are not invariant

under the standard undeformed action of the Poincaré group as shown for example by the

observability of θµν .

3. Quantum fields in noncommutative spacetime

It can be shown immediately that the action of the deformed coproduct is not compatible

with standard statistics [25]. Thus for θµν = 0, we have the axiom in quantum theory that

the statistics operator τ0 defined by

τ0 (φ⊗ χ) = χ⊗ φ (3.1)

is superselected. In particular, the Lorentz group action must and does commute with the

statistics operator,

τ0∆0(Λ) = ∆0(Λ)τ0, (3.2)

where Λ ∈ P↑+, the connected component of the Poincaré group.

Also all the states in a given superselection sector are eigenstates of τ0 with the same

eigenvalue. Given an element φ⊗ χ of the tensor product, the physical Hilbert spaces can

be constructed from the elements
(

1± τ0

2

)
(φ⊗ χ). (3.3)

Now since τ0Fθ = F−1
θ τ0, we have that

τ0∆θ(Λ) 6= ∆θ(Λ)τ0 (3.4)

showing that the use of the usual statistics operator is not compatible with the deformed

coproduct.

But the new statistics operator

τθ ≡ F−1
θ τ0Fθ, τ2

θ = 1⊗ 1 (3.5)
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does commute with the deformed coproduct.

The two-particle state |p, q〉Sθ ,Aθ
for bosons and fermions obeying deformed statistics

is constructed as follows:

|p, q〉Sθ ,Aθ
= |p〉 ⊗

Sθ,Aθ
|q〉 =

(
1± τθ

2

)
(|p〉 ⊗ |q〉)

=
1

2

(
|p〉 ⊗ |q〉 ± e−ipµθµνqν |q〉 ⊗ |p〉

)
. (3.6)

Exchanging p and q in the above, one finds

|p, q〉Sθ ,Aθ
= ± e−ipµθµνqν |q, p〉Sθ ,Aθ

. (3.7)

In Fock space, the above two-particle state is constructed from a second-quantized field

ϕθ according to

1

2
〈0|ϕθ(x1)ϕθ(x2)a

†
qa†p|0〉 =

(
1± τθ

2

)
(ep ⊗ eq)(x1, x2)

= (ep ⊗Sθ,Aθ
eq)(x1, x2)

= 〈x1, x2|p, q〉Sθ ,Aθ
(3.8)

where ϕ0 is a boson(fermion) field associated with |p, q〉S0
(|p, q〉A0

).

On using eq. (3.7), this leads to the commutation relation

a†pa†q = ± eipµθµνqν a†qa†p. (3.9)

Let Pµ be the Fock space momentum operator. (It is the representation of the trans-

lation generator introduced previously. We use the same symbol for both.) Then the

operators ap , a†p can be written as follows:

ap = cp e−
i
2
pµθµνPν , a†p = c†p e

i
2
pµθµνPν , (3.10)

cp’s being θµν = 0 annihilation operators.

The map from cp, c†p to ap, a†p in eq. (3.10) is known as the “dressing transforma-

tion” [26, 27].

In the noncommutative case, a free spin-zero quantum scalar field of mass m has the

mode expansion

ϕθ(x) =

∫
d3p

(2π)3

(
ap ep(x) + a†p e−p(x)

)
(3.11)

where

ep(x) = e−i p·x, p · x = p0x0 − p · x, p0 =
√

p2 + m2 > 0.

The deformed quantum field ϕθ differs form the undeformed quantum field ϕ0 in two

ways: i.) ep belongs to the noncommutative algebra of M4 and ii.) ap is deformed by

statistics. The deformed statistics can be accounted for by writing [28]

ϕθ = ϕ0 e
1
2

←−
∂ ∧P (3.12)
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where ←−
∂ ∧ P ≡ ←−∂ µθµνPν . (3.13)

It is easy to write down the n-point correlation function for the deformed quantum

field ϕθ(x) in terms of the undeformed field ϕ0(x):

〈0|ϕθ(x1)ϕθ(x2) · · ·ϕθ(xn)|0〉 = 〈0|ϕ0(x1)ϕ0(x2) · · ·ϕ0(xn)|0〉 e(− i
2

Pn
J=2

PJ−1
I=1

←−
∂ xI
∧
←−
∂ xJ

).

(3.14)

On using

ϕθ(x) = ϕθ(x, t) =

∫
d3k

(2π)3
Φθ(k, t) eik·x, (3.15)

we find for the vacuum expectation values, in momentum space

〈0|Φθ(k1, t1)Φθ(k2, t2) · · ·Φθ(kn, tn)|0〉 = e( i
2

P

J>I kI∧kJ)〈0|

×Φ0

(
k1, t1 +

~θ0 · k2 + ~θ0 · k3 + · · · + ~θ0 · kn

2

)

×Φ0

(
k2, t2 +

−~θ0 · k1 + ~θ0 · k3 + · · ·+ ~θ0 · kn

2

)
· · ·

×Φ0

(
kn, tn+

−~θ0 · k1 − ~θ0 · k2 − · · · − ~θ0 · kn−1

2

)
|0〉 (3.16)

where
~θ0 = (θ01, θ02, θ03). (3.17)

Since the underlying Friedmann-Lemâıtre-Robertson-Walker (FLRW) spacetime has

spatial translational invariance,

k1 + k2 + · · · + kn = 0,

the n-point correlation function in momentum space becomes

〈0|Φθ(k1, t1)Φθ(k2, t2) · · ·Φθ(kn, tn)|0〉 = e( i
2

P

J>I kI∧kJ )〈0|Φ0

(

k1, t1 −
~θ0 · k1

2

)

×Φ0

(
k2, t2 − ~θ0 · k1 −

~θ0 · k2

2

)

× · · ·Φ0

(
kn, tn−~θ0 · k1−~θ0 · k2−· · ·−~θ0 · kn−1−

~θ0 · kn

2

)
|0〉.(3.18)

In particular, the two-point correlation function is

〈0|Φθ(k1, t1)Φθ(k2, t2)|0〉 = 〈0|Φ0

(

k1, t1 −
~θ0 · k1

2

)

Φ0

(

k2, t2 −
~θ0 · k1

2

)

|0〉, (3.19)

since it vanishes unless k1 + k2 = 0 and hence e( i
2

P

J>I kI∧kJ ) = 1.
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We emphasize that eqs. (3.16), (3.18) and (3.19) come from eq. (3.9) which implies

eqs. (3.10), (3.12) and (3.14). They are exclusively due to deformed statistics. The ∗-
product is still mandatory when taking products of ϕθ evaluated at the same point.

In standard Hopf algebra theory, the exchange operation is to be performed using the

R-matrix times the flip operator σ [29, 30]. It is easy to check that Rσ acts as identity on

any pair of factors in eqs. (3.16) and (3.18).

One can also explicitly show that the n-point functions are invariant under the twisted

Poincaré group while those of the conventional theory are not. Hence the requirement

of twisted Poincaré invariance fixes the structure of n-point functions. These points are

discussed further in [25].

It is interesting to note that the two-point correlation function is nonlocal in time

in the noncommutative frame work. Also note the following: Assuming that θµν is non-

degenerate, we can write it as

θµν = α ǫab eµ
a eν

b + β ǫab fµ
a f ν

b ,

α, β 6= 0, ǫab = −ǫba, a, b = 1, 2

where ea, eb, fa, fb are orthonormal real vectors. Thus θµν defines two distinguished two-

planes inM4, namely those spanned by ea and by fa. For simplicity we have assumed that

one of these planes contains the time direction, say e1 : eµ
1 = δµ

0 . The θ0i part then can be

regarded as defining a spatial direction ~θ0 as given by eq. (3.17).

We will make use of the modified two-point correlation functions given by eq. (3.19)

when we define the power spectrum for inflaton field perturbations in the noncommutative

frame work.

4. Cosmological perturbations and (direction-independent) power spec-

trum for θ
µν = 0

In this section we briefly review how fluctuations in the inflaton field cause inhomogeneities

in the distribution of matter and radiation following [31].

The scalar field φ driving inflation can be split into a zeroth order homogeneous part

and a first order perturbation:

φ(x, t) = φ(0)(t) + δφ(x, t) (4.1)

The energy-momentum tensor for φ is

T α
β = gαν ∂φ

∂xν

∂φ

∂xβ
− gα

β

[
1

2
gµν ∂φ

∂xµ

∂φ

∂xν
+ V (φ)

]
(4.2)

We assume a spatially flat, homogeneous and isotropic (FLRW) background with the

metric

ds2 = dt2 − a2(t)dx2 (4.3)

where a is the cosmological scale factor, and nonvanishing Γ’s

Γ0
ij = δija2H and Γi

0j = Γi
j0 = δi

jH
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where H is the Hubble parameter.

In conformal time η where dη = dta(t) ,−∞ < η < 0, the metric becomes

ds2 = a2(η)
(
dη2 − dx2

)
, (4.4)

where a is the cosmological scale factor now regarded as a function of conformal time.

Using this metric we write the equation for the zeroth order part of φ [31],

φ̈(0) + 2aHφ̇(0) + a2V ′φ(0) = 0, (4.5)

where overdots denote derivatives with respect to conformal time η and V ′ is the derivative

of V with respect to the field φ(0). Notice that in conformal time η we have da(η)
dη

= a2(η)H

while in cosmic time t we have da(t)
dt

= aH.

The equation for δφ can be obtained from the first order perturbation of the energy-

momentum tensor conservation equation:

T µ
ν; µ =

∂T µ
ν

∂xµ
+ Γµ

αµT α
ν − Γα

νµT µ
α = 0. (4.6)

The perturbed part of the energy-momentum tensor δT µ
ν satisfies the following con-

servation equation in momentum space [31]:

∂δT 0
0

∂t
+ ikiδT

i
0 + 3HδT 0

0 −HδT i
i = 0, (4.7)

where

T µν(k, t) =

∫
d3x T µν(x, t) e−ik·x. (4.8)

Let φ(x, t) =
∫

d3k
(2π)3

φ̃(k, t) eik·x. Writing down the perturbations to the energy-

momentum tensor in terms of φ̃(k, t),

δT i
0 =

iki

a3
˙̃
φ(0)δφ̃,

δT 0
0 =

− ˙̃
φ(0) ˙

δφ̃

a2
− V ′

(
φ̃(0)

)
δφ̃,

δT i
j = δij

(
˙̃φ(0) ˙δφ̃

a2
− V ′

(
φ̃(0)

)
δφ̃

)

,

the conservation equation becomes

δ̈φ̃ + 2aH ˙δφ̃ + k2δφ̃ = 0. (4.9)

Eliminating the middle Hubble damping term by a change of variable ζ(k, η) =

a(η)δφ̃(k, η), the above equation becomes

ζ̈(k, η) + ω2
k(η)ζ(k, η) = 0, ω2

k(η) ≡
(

k2 − ä(η)

a(η)

)
. (4.10)
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The mode functions u associated with the quantum operator ζ̂ satisfy

ü(k, η) +

(
k2 − ä(η)

a(η)

)
u(k, η) = 0 (4.11)

with the initial conditions u(k, ηi) = 1√
2ωk(ηi)

and u̇(k, ηi) = i
√

ωk(ηi). Notice that these

initial conditions have meaning only when ωk(ηi) > 0.

We can immediately write down the quantum operator associated with the variable ζ,

ζ̂(k, η) = u(k, η)âk + u∗(k, η)â†k, (4.12)

with the bosonic commutation relations [âk, âk′ ] = [â†k, â†k′ ] = 0 and [âk, â†k′ ] = (2π)3δ3(k−
k′).

During inflation we have scale factor a(η) ≃ −(ηH)−1. Thus eq. (4.11) takes the

form [31]

ü +

(
k2 − 2

η2

)
u = 0. (4.13)

When the perturbation modes are well within the horizon, k|η| ≫ 1, one can obtain a

properly normalized solution u(k, η) from the conditions imposed on it at very early times

during inflation. Such a solution is [31, 32]

u(k, η) =
1√
2k

(
1− i

kη

)
e−ik(η−ηi). (4.14)

The variances involving ζ̂ and ζ̂† are

〈0|ζ̂(k, η)ζ̂(k′, η)|0〉 = 0,

〈0|ζ̂†(k, η)ζ̂†(k′, η)|0〉 = 0,

〈0|ζ̂†(k, η)ζ̂(k′, η)|0〉 = (2π)3|u(k, η)|2δ3(k− k′)

≡ (2π)3Pζ(k, η)δ3(k− k′) (4.15)

where Pζ is the power spectrum of ζ̂. Eq. (4.15) can be treated as a general definition of

power spectrum.

In the case when spacetime is commutative (θµν = 0), the power spectrum in eq. (4.15)

is

〈0|ζ̂†(k, η)ζ̂(k′, η)|0〉 = (2π)3Pζ(k, η)δ3(k− k′). (4.16)

The Dirac delta function in eqs. (4.15) and (4.16) shows that perturbations with dif-

ferent wave numbers are uncoupled as a consequence of the translational invariance of the

underlying spacetime. Rotational invariance of the underlying (commutative) spacetime

constraints the power spectrum Pζ(k, η) to depend only on the magnitude of k.

Towards the end of inflation, k|η| (−∞ < η < 0) becomes very small. In that case the

small argument limit of eq. (4.14),

lim
k|η|→0

u(k, η) =
1√
2k

−i

kη
e−ik(η−ηi), (4.17)
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gives the power spectrum Pζ(k, η) = |u(k, η)|2. On using ζ(k, η) = a(η)δφ̃(k, η), we write

the power spectrum P
δφ̃

for the scalar field perturbations [31]:

P
δφ̃

(k, η) =
|u(k, η)|2

a(η)2
=

1

2k3

1

a(η)2η2
. (4.18)

In terms of the Hubble parameter H during inflation (H ≃ − 1
a(η)η ), the power spectrum

becomes

P
δφ̃

(k, η) =
1

2k3
H2. (4.19)

We are interested in the post-inflation power spectrum for the scalar metric pertur-

bations since they couple to matter and radiation and give rise to inhomogeneities and

anisotropies in their respective distributions which we observe. This spectrum comes from

the inflaton field since the inflaton field perturbations get transferred to the scalar part of

the metric.

We write the perturbed metric in the longitudinal gauge [33],

ds2 = a2(η)
[
(1 + 2χ(x, η))dη2 − (1− 2Ψ(x, η))γij(x, η)dxidxj

]
, (4.20)

where χ and Ψ are two physical metric degrees of freedom describing the scalar metric

perturbations and γij is the metric of the unperturbed spatial hypersurfaces.

In our model, as in the case of most simple cosmological models, in the absence of

anisotropic stress (δT i
j = 0 for i 6= j), the two scalar metric degrees of freedom χ and Ψ

coincide upto a sign:

Ψ = −χ. (4.21)

The remaining metric perturbation Ψ can be expressed in terms of the inflaton field

fluctuation δφ̃ at horizon crossing [31],

Ψ̃
∣∣∣
post inflation

=
2

3
aH

δφ̃
˙̃φ(0)

∣∣∣
horizon crossing

(4.22)

where Ψ̃ is the Fourier coefficient of Ψ.

On using the general definition of power spectrum as in eq. (4.16), the power spectra

for PΨ̃ and P
δφ̃

can be connected when a mode k crosses the horizon, i.e. when a(η)H = k,

say for η = η0:

PΨ̃(k, η) =
4

9

(
a(η)H

˙̃φ(0)

)2

P
δφ̃

∣∣∣
a(η0)H=k

. (4.23)

From eq. (4.19), eq. (4.21) and using

aH/ ˙̃φ(0) =
√

4πG/ǫ (4.24)

at horizon crossing, where G is Newton’s gravitational constant and ǫ is the slow-roll

parameter in the single field inflation model [31], we have the power spectrum (defined as

in eq. (4.16)) for the scalar metric perturbation at horizon crossing,

PΨ̃(k, η(t)) = PΦ0
(k, η(t)) =

16πG

9ǫ

H2

2k3

∣∣∣
a(η0)H=k

, (4.25)
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Here we wrote Φ0 for χ̃.

Note that the Hubble parameter H is (nearly) constant during inflation and also it is

the same in conformal time η and cosmic time t. Since the time dependence of the power

spectrum is through the Hubble parameter in eq. (4.25), we have

PΦ0
(k, η(t)) = PΦ0

(k, t) ≡ PΦ0
(k) = constant in time. (4.26)

The power spectrum in eq. (4.25) is for commutative spacetime and it depends on the

magnitude of k and not on its direction. In the next section, we will show that the power

spectrum becomes direction-dependent when we make spacetime noncommutative.

5. Direction-dependent power spectrum

The two-point function in noncommutative spacetime, using eq. (3.19), takes the form

〈0|Φθ(k, η)Φθ(k
′, η)|0〉 = 〈0|Φ0(k, η−)Φ0(k

′, η−)|0〉 , (5.1)

where η− = η
(
t− ~θ0·k

2

)
.

In the commutative case, the reality of the two-point correlation function (since the

density fields Φ0 are real) is obtained by imposing the condition

〈Φ0(k, η)Φ0(k
′, η)〉∗ = 〈Φ0(−k, η)Φ0(−k′, η)〉. (5.2)

But this condition is not correct when the fields are deformed. That is because even if

Φθ is self-adjoint, Φθ(x, t)Φθ(x
′, t′) 6= Φθ(x

′, t′)Φθ(x, t) for space-like separations. A simple

and natural modification (denoted by subscript M) of the correlation function that ensures

reality involves “symmetrization” of the product of ϕθ’s or keeping its self-adjoint part.

That involves replacing the product of φθ’s by half its anti-commutator,

1

2
[ϕθ(x, η), ϕθ(y, η)]+ =

1

2
(ϕθ(x, η)ϕθ(y, η) + ϕθ(y, η)ϕθ(x, η)) . (5.3)

(We emphasize that this procedure for ensuring reality is a matter of choice)

For the Fourier modes Φθ, this procedure gives:

〈Φθ(k, η)Φθ(k
′, η)〉M =

1

2

(
〈Φθ(k, η)Φθ(k

′, η)〉 + 〈Φθ(−k, η)Φθ(−k′, η)〉∗
)

(5.4)

After the modification of the correlation function, the power spectrum for scalar metric

perturbation takes the form

〈Φθ(k, η)Φθ(k
′, η)〉M = (2π)3PΦθ

(k, η)δ3(k + k′). (5.5)

Using eqs. (4.18), (4.23), (5.1) and (5.4) we write down the modified power spectrum:

PΦθ
(k, η) =

1

2



4

9

(
a(η)H

˙̃
φ(0)

)2
1

a(η)2
(
|u(k, η−)|2 + |u(−k, η+)|2

)


 . (5.6)
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where η± = η(t ± ~θ0·k
2 ). Notice that here the argument of the scale factor a(η) is not

shifted, since it is not deformed by noncommutativity.

It is easy to show that

u(k, η±) =
e−ikη±

√
2k

(
1− i

kη±

)
(5.7)

are also solutions of eq. (4.13).

Thus on using eq. (4.24) and the limit kη± → 0 of eq. (5.7), the modified power

spectrum is found to be

PΦθ
(k, η) =

1

2

[
16πG

9ǫ

1

a(η)2
(
|u(k, η−)|2 + |u(−k, η+)|2

)]

=
1

2

[
16πG

9ǫ

1

a(η)2

(
1

2k3(η−)2
+

1

2k3(η+)2

)]

=
8πG

9ǫ

1

2k3a(η)2

(
1

(η−)2
+

1

(η+)2

)
. (5.8)

Assuming that the Hubble parameter H is nearly a constant during inflation, the

conformal time [31]

η(t) ≃ −1

Ha0
e−Ht. (5.9)

gives an expression for η±:

η± = η(t) e∓
1
2
H~θ0·k. (5.10)

On using eq. (5.10) in eq. (5.8) we can easily write down an analytic expression for the

modified primordial power spectrum at horizon crossing,

PΦθ
(k) = PΦ0

(k) cosh
(
H~θ0 · k

)
(5.11)

where PΦ0
(k) is given by eq. (4.25). Note that the modified power spectrum also respects

the k→ −k parity symmetry.

This power spectrum depends on both the magnitude and direction of k and clearly

breaks rotational invariance. In the next section we will connect this power spectrum to

the two-point temperature correlations in the sky and obtain an expression for the amount

of deviation from statistical isotropy due to noncommutativity.

6. Signature of noncommutativity in the CMB radiation

We are interested in quantifying the effects of noncommutative scalar perturbations on

the cosmic microwave background fluctuations. We assume homogeneity of temperature

fluctuations observed in the sky. Hence it is a function of a unit vector giving the direction

in the sky and can be expanded in spherical harmonics:

∆T (n̂)

T
=
∑

lm

almYlm(n̂), (6.1)
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Here n̂ is the direction of incoming photons.

The coefficients of spherical harmonics contain all the information encoded in the

temperature fluctuations. For θµν = 0, they can be connected to the primordial scalar

metric perturbations Φ0,

alm = 4π(−i)l
∫

d3k

(2π)3
∆l(k)Φ0(k, η)Y ∗lm(k̂), (6.2)

where ∆l(k) are called transfer functions. They describe the evolutions of scalar metric

perturbations Φ0 from horizon crossing epoch to a time well into the radiation dominated

epoch.

The two-point temperature correlation function can be expanded in spherical harmon-

ics: 〈
∆T (n̂)

T

∆T (n̂′)

T

〉
=
∑

lml′m′

〈alma∗l′m′〉Y ∗lm(n̂)Yl′m′(n̂′). (6.3)

The variance of alm’s is nonzero. For θµν = 0, we have

〈alma∗l′m′〉 = Clδll′δmm′ . (6.4)

Using eq. (4.16) and eq. (6.2), we can derive the expression for Cl’s for θµν = 0:

〈alma∗l′m′〉 = 16π2(−i)l−l′
∫

d3k

(2π)3
d3k′

(2π)3
∆l(k)∆l′(k

′)〈Φ0(k, η)Φ∗0(k
′, η)〉 Y ∗lm(k̂)Yl′m′(k̂′)

= 16π2(−i)l−l′
∫

d3k

(2π)3
∆l(k)∆l′(k)PΦ0

(k) Y ∗lm(k̂)Yl′m′(k̂)

=
2

π

∫
dk k2 (∆l(k))2 PΦ0

(k) δll′δmm′ = Cl δll′δmm′ , (6.5)

where PΦ0
(k) is given by eq. (4.25).

When the fields are noncommutative, the two-point temperature correlation function

clearly depends on θµν . We can still write the two-point temperature correlation as in

eq. (6.3): 〈
∆T (n̂)

T

∆T (n̂′)

T

〉

θ

=
∑

lml′m′

〈alma∗l′m′〉θYlm(n̂)Y ∗l′m′(n̂′). (6.6)

This gives

〈alma∗l′m′〉θ = 16π2(−i)l−l′
∫

d3k

(2π)3
d3k′

(2π)3
∆l(k)∆l′(k

′)〈Φθ(k, η)Φ†θ(k
′, η)〉MY ∗lm(k̂)Yl′m′(k̂′).

(6.7)

The two-point correlation function in eq. (6.7) is calculated during the horizon crossing

of the mode k. Once a mode crosses the horizon, it becomes independent of time, so that

we can rewrite the two-point function as

〈Φθ(k, η)Φ†θ(k
′, η)〉M = (2π)3PΦθ

(k)δ3(k− k′) (6.8)

where PΦθ
(k) is given by eq. (5.11).
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Thus we write the noncommutative angular correlation function as follows:

〈alma∗l′m′〉θ = 16π2(−i)l−l′
∫

d3k

(2π)3
∆l(k)∆l′(k)PΦθ

(k) Y ∗lm(k̂)Yl′m′(k̂). (6.9)

The regime in which the transfer functions act is well above the noncommutative length

scale, so that it is perfectly legitimate to assume that the transfer functions are the same

as in the commutative case.

Assuming that the ~θ0 is along the z-axis, we have the expansion

e±
~Hθ0·k =

∞∑

l=0

il
√

4π(2l + 1)jl(∓iθkH)Yl0(cosϑ) (6.10)

where ~θ0 · k = θk cosϑ and jl is the spherical Bessel function.

On using eq. (6.10) and the identities jl(−z) = (−1)ljl(z) and jl(iz) = il il(z), where

il is the modified spherical Bessel function, we can write eq. (5.11) as

PΦθ
(k) = PΦ0

(k)

∞∑

l=0, l:even

√
4π(2l + 1) il(θkH) Yl0(cosϑ). (6.11)

Using eqs. (6.9) and (6.11), we rewrite eq. (6.9) as,

〈alma∗l′m′〉θ =
2

π

∫
dk

∞∑

l′′=0, l′′:even

(i)l−l′(−1)m(2l′′ + 1) k2∆l(k)∆l′(k)PΦ0
(k)il′′(θkH)

×
√

(2l + 1)(2l′ + 1)

(
l l′ l′′

0 0 0

)(
l l′ l′′

−m m′ 0

)
, (6.12)

the Wigner’s 3-j symbols in eq. (6.12) being related to the integrals of spherical harmonics:

∫
dΩk Yl,−m(k̂)Yl′m′(k̂)Yl′′0(k̂)=

√
(2l+1)(2l′+1)(2l′′+1)/4π

(
l l′ l′′

0 0 0

)(
l l′ l′′

−m m′ 0

)

. (6.13)

We can also get a simplified form of eq. (6.12) by expanding the modified power

spectrum in eq. (5.11) in powers of θ up to the leading order:

PΦθ
(k) ≃ PΦ0

(k)

[
1 +

H2

2

(
~θ0 · k

)2
]

. (6.14)

A modified power spectrum of this form has been considered in [34], where the rotational

invariance is broken by introducing a (small) nonzero vector. In our case, the vector that

breaks rotational invariance is ~θ0 and it emerges naturally in the framework of field theories

on the noncommutative Groenewold-Moyal spacetime. We have also an exact expression

for PΦθ
(k) in eq. (5.11).

Work is in progress to find a best fit for the data available and thereby to determine

the length scale of noncommutativity.

The direction-dependent primordial power spectrum discussed in [34] is considered in a

model independent way in [35] to compute minimum-variance estimators for the coefficients
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of direction-dependence. A test for the existence of a preferred direction in the primordial

perturbations using full-sky CMB maps is performed in a model independent way in [36].

Imprints of cosmic microwave background anisotropies from a non-standard spinor field

driven inflation is considered in [37]. Anisotropic dark energy equation of state can also

give rise to a preferred direction in the universe [38].

7. Non-gaussianity from noncommutativity

In this section, we briefly explain how n-point correlation functions become non-Gaussian

when the fields are noncommutative, assuming that they are Gaussian in their commutative

limits.

Consider a noncommutative field ϕθ(x, t). Its first moment is obviously zero:

〈ϕθ(x, t)〉 = 〈ϕ0(x, t)〉 = 0.

The information about noncommutativity is contained in the higher moments of ϕθ.

We show that the n-point functions cannot be written as sums of products of two-point

functions. That proves that the underlying probability distribution is non-Gaussian.

The n-point correlation function is

Cn(x1, x2, . . . , xn) = 〈ϕθ(x1, t1) · · ·ϕθ(xn, tn)〉 (7.1)

Since ϕ0 is assumed to be Gaussian and ϕθ is given in terms of ϕ0 by eq. (3.12), all

the odd moments of ϕθ vanish.

But the even moments of ϕθ need not vanish and do not split into sums of products

of its two-point functions in a familiar way.

Non-Gaussianity cannot be seen at the level of two-point functions. Consider the

two-point function C2. We write this in momentum space in terms of Φ0:

C2 = 〈Φθ(k1, t1)Φθ(k2, t2)〉 = e−
i
2
(k2∧k1)

〈
Φ0

(
k1, t1+

~θ0 · k2

2

)
Φ0

(
k2, t2−

~θ0 · k1

2

)〉
. (7.2)

where ki ∧ kj ≡ kiθ
ijkj .

Making use of the translation invariance k1 + k2 = 0, the above equation becomes

〈Φθ(k1, t1)Φθ(k2, t2)〉 =

〈

Φ0

(

k1, t1 −
~θ0 · k1

2

)

Φ0

(

k2, t2 − ~θ0 · k1 −
~θ0 · k2

2

)〉

. (7.3)

Non-Gaussianity can be seen in all the n-point functions for n ≥ 4 and even n. Still

they can all be written in terms of correlation functions of Φ0. For example, let us consider

the four-point function C4:

C4 = 〈Φθ(k1, t1)Φθ(k2, t2)Φθ(k3, t3)Φθ(k4, t4)〉 = e−
i
2
(k3∧k2+k3∧k1+k2∧k1)

×
〈
Φ0

(
k1, t1−

~θ0 · k1

2

)
Φ0

(
k2, t2−~θ0 · k1−

~θ0 · k2

2

)
Φ0

(
k3, t3−~θ0 · k1−~θ0 · k2−

~θ0 · k3

2

)

× Φ0

(
k4, t4 − ~θ0 · k1 − ~θ0 · k2 − ~θ0 · k3 −

~θ0 · k4

2

)〉
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Here we have used translational invariance, which implies that k1 +k2 +k3 +k4 = 0. Using

this equation once more to eliminate k4, we find

C4 = e−
i
2
(k3∧k2+k3∧k1+k2∧k1)

〈

Φ0

(

k1, t1 −
~θ0 · k1

2

)

Φ0

(

k2, t2 − ~θ0 · k1 −
~θ0 · k2

2

)

×

×Φ0

(

k3, t3−~θ0 · k1−~θ0 · k2−
~θ0 · k3

2

)

Φ0

(

k4, t4−
~θ0 · k1+~θ0 · k2+~θ0 · k3

2

)〉

Assuming Gaussianity for the field Φ0 and denoting Φ0(ki, ti) by Φ
(i)
0 , we have,

〈
Φ

(1)
0 Φ

(2)
0 · · ·Φ

(i)
0 Φ

(i+1)
0 · · ·Φ(n)

0

〉
=
〈
Φ

(1)
0 Φ

(2)
0

〉〈
Φ

(3)
0 Φ

(4)
0

〉
· · ·
〈
Φ

(i)
0 Φ

(i+1)
0

〉
· · ·
〈
Φ

(n−1)
0 Φ

(n)
0

〉

+ permutations (for n even) (7.4)

and 〈
Φ

(1)
0 Φ

(2)
0 · · ·Φ

(i)
0 Φ

(i+1)
0 · · ·Φ(n)

0

〉
= 0 (for n odd). (7.5)

Therefore C4 is

〈Φθ(k1, t1)Φθ(k2, t2)Φθ(k3, t3)Φθ(k4, t4)〉 = e−
i
2
(k3∧k2+k3∧k1+k2∧k1)

×
(〈

Φ0

(
k1, t1 −

~θ0 · k1

2

)
Φ0

(
k2, t2 − ~θ0 · k1 −

~θ0 · k2

2

)〉

×
〈
Φ0

(
k3, t3−~θ0 · k1−~θ0 · k2−

~θ0 · k3

2

)
Φ0

(
k4, t4−

~θ0 · k1+~θ0 · k2+~θ0 · k3

2

)〉

+

〈
Φ0

(
k1, t1 −

~θ0 · k1

2

)
Φ0

(
k3, t3 − ~θ0 · k1 − ~θ0 · k2 −

~θ0 · k3

2

)〉

×
〈

Φ0

(

k2, t2 − ~θ0 · k1 −
~θ0 · k2

2

)

Φ0

(

k4, t4 −
~θ0 · k1 + ~θ0 · k2 + ~θ0 · k3

2

)〉

+

〈

Φ0

(

k1, t1 −
~θ0 · k1

2

)

Φ0

(

k4, t4 −
~θ0 · k1 + ~θ0 · k2 + ~θ0 · k3

2

)〉

×
〈

Φ0

(

k2, t2−~θ0 · k1−
~θ0 · k2

2

)

Φ0

(

k3, t3−~θ0 · k1−~θ0 · k2−
~θ0 · k3

2

)〉)

. (7.6)

Using spatial translational invariance for each two-point function, we have

〈Φθ(k1, t1)Φθ(k2, t2)Φθ(k3, t3)Φθ(k4, t4)〉=
[〈

Φ0

(
k1, t1−

~θ0 · k1

2

)
Φ0

(
k2, t2−

~θ0 · k1

2

)〉

×
〈

Φ0

(
k3, t3 −

~θ0 · k3

2

)
Φ0

(
k4, t4 −

~θ0 · k3

2

)〉]

+e−ik2∧k1

[〈
Φ0

(
k1, t1 −

~θ0 · k1

2

)
Φ0

(
k3, t3 − ~θ0 · k2 −

~θ0 · k1

2

)〉
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×
〈

Φ0

(

k2, t2−~θ0 · k1−
~θ0 · k2

2

)

Φ0

(

k4, t4−
~θ0 · k2

2

)〉]

+

[〈

Φ0

(

k1, t1 −
~θ0 · k1

2

)

Φ0

(

k4, t4 −
~θ0 · k1

2

)〉

×
〈

Φ0

(

k2, t2−~θ0 · k1−
~θ0 · k2

2

)

Φ0

(

k3, t3−~θ0 · k1−
~θ0 · k2

2

)〉]

. (7.7)

Notice that the second term has a non-trivial phase which depends on the spatial mo-

menta k1 and k2 and the noncommutative parameter θ. As C4 cannot be written as sums

of products of C2’s in a standard way, we see that the noncommutative probability distri-

bution is non-Gaussian. Also it should be noted that we still cannot achieve Gaussianity

of n-point functions even if we modify them by imposing the reality condition as we did

for the two-point case.

Non-Gaussianity affects the CMB distribution and also the large scale structure (the

large scale distribution of matter in the universe). We have not considered the latter. An

upper bound to the amount of non-Gaussianity coming from noncommutativity can be set

by extracting the four-point function from the data.

8. Conclusions

In this paper, we have shown that the introduction of spacetime noncommutativity gives

rise to nontrivial contributions to the CMB temperature fluctuations. The two-point

correlation function in momentum space, called the power spectrum, becomes direction-

dependent. Thus spacetime noncommutativity breaks the rotational invariance of the CMB

spectrum. That is, CMB radiation becomes statistically anisotropic. This can be measured

experimentally to set bounds on the noncommutative parameter. Currently, we [40] are

making numerical fits to the available CMB data to put bounds on θ.

We have also shown that the probability distribution governing correlations of fields

on the Groenewold-Moyal algebra Aθ are non-Gaussian. This affects the correlation func-

tions of temperature fluctuations. By measuring the amount of non-Gaussianity from the

four-point correlation function data for temperature fluctuations, we can thus set further

limits on θ.
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